# Copulae Based Factor Model for Credit Risk Analysis

Meng-Jou Lu Cathy Yi-Hsuan Chen Wolfgang Karl Härdle

Ladislaus von Bortkiewicz Chair of Statistics Humboldt–Universität zu Berlin C.A.S.E. – Center for Applied Statistics and Economics National Chiao Tung University Department of Finance Chung Hua University Ivb.wiwi.hu-berlin.de case.hu-berlin.de nctu.edu.tw











#### Figure 1: Credit Risk depends the state of economy





Figure 2: Annual Default Counts from 1995-2013





Figure 3: Annual average LGD: IG , SG and All , from 1995-2013







# Objectives

#### (i) Credit Risk Modeling

- Factor loading conditional on hectic and quiet state
- State-dependent recovery rate

#### (ii) Model Comparison

Four models



#### Implication to Basel III

- Highlight systematic risk after 2008-2009 crisis
- Credit risk versus Business cycle
- ⊡ How credit risk moves over the business cycle
- Contribution of systematic risk on credit risk is state-dependent



# Standard Technology

🖸 Default Event Modeling

- Latent variable, U<sub>i</sub>, is a linear combination of systematic and idiosyncratic vector
- Copula enables flexible and realistic default dependent structure



## Outline

- 1. Motivation  $\checkmark$
- 2. Factor Copulae & Stochastic Recoveries
- 3. Methodology
- 4. Empirical Results
- 5. Conclusions

# Factor Copulae & Stochastic Recoveries

- Factor copula model is a flexible measurement of portfolio credit risk: Krupskii and Joe (2013)
- Correlation breakdown structure: Ang and Bekaert (2002), Anderson et al. (2005)
- Recovery rate varies with the market conditions: Amraoui et al. (2012)



#### Candidate Models

- FC model One-factor Gaussian copula model with constant correlation structure and constant recoveries
- □ RFL model Conditional factor loading and constant recoveries
- RR model One-factor Gaussian copula and stochastic recoveries
- RRFL model Conditional factor loading and stochastic recoveries



## **Default Modeling**

🖸 One-factor non-Standardized Gaussian Copula model

$$U_i = \alpha_i Z + \sqrt{1 - \alpha_i^2 \varepsilon_i}$$
  $i = 1, \dots, N$ 

- $\Box$  Z: systematic factor,  $\varepsilon_i$ : idiosyncratic factors
- $\boxdot$  Z and  $\varepsilon_i$  are independent, and  $\varepsilon_i$  is uncorrelated with each other

$$\begin{array}{ll} \hline \end{array} \text{ The correlation coefficient between } U_i \text{ and } U_j \text{ is } \\ \rho_{ij} = \frac{\alpha_i \alpha_j \sigma^2}{\sqrt{\alpha_i^2 (\sigma^2 - 1) + 1} \sqrt{\alpha_j^2 (\sigma^2 - 1) + 1}} \end{array} \end{array}$$



# **Default Modeling**

The default indicator

$$\mathsf{I}\left\{\tau_{i} \leq t\right\} = \mathsf{I}\left[U_{i} \leq F^{-1}\left\{P_{i}(t)\right\}\right]$$

- $\bigcirc$   $U_i$ : the proxies for firm asset and liquidation value
- P<sub>i</sub>(t): hazard rate and marginal probability that obligor i defaults before t.
  - From Moody's report
  - Extract from Credit spreads
  - Extract from Credit default swaps spreads

#### **Default Modeling**

Portfolio Loss for each obligor

$$L = \sum_{i=1}^{N} G_{i} \mathsf{I} \{ \tau_{i} \leq t \} = \sum_{i=1}^{N} G_{i} \mathsf{I} \left[ U_{i} \leq F^{-1} \{ P_{i}(t) \} \right]$$

G<sub>i</sub> is the loss given default (LGD) (*i*-th obligor's exposure = 1).
 F<sup>-1</sup>(·) donates the inverse cdf of any distribution.



# Copulae

⊡ For *N* dimensions distribution *F* with marginal distribution  $F_{X_1}, \dots, F_{X_N}$ , Copula function:

$$F(x_1,\cdots,x_N)=C\left\{F_{X_1}(x_1),\cdots,F_{X_N}(x_N)\right\}$$

 $\boxdot$  Gaussian Copula  $C = C(\Sigma)$ 







#### **Conditional Default Model**

□ Conditional factor copulae model

$$U_i|_{S=H} = \alpha_i^H Z + \sqrt{1 - (\alpha_i^H)^2 \varepsilon_i}$$
$$U_i|_{S=Q} = \alpha_i^Q Z + \sqrt{1 - (\alpha_i^Q)^2 \varepsilon_i}$$

Conditional default probability

$$P(\tau_i < t | \mathsf{S}) = F\left[\frac{F^{-1}\{P_i(t)\} - \alpha_i^{\mathsf{S}}Z}{\sqrt{1 - (\alpha_i^{\mathsf{S}})^2}}\right] = P_i(Z|\mathsf{S}) \quad \mathsf{S} \in \{\mathsf{H}, \mathsf{Q}\}$$

Ω<sup>H</sup>, α<sup>Q</sup> are conditional factor loading. Interview
 P(S=H)=ω, P(S=Q)=1 − ω
 Copulae Based Factor Model for Credit Risk Analysis —

#### State-dependent Recovery Rate

- □ The LGD on name *i*,  $G_i(Z)$  is related to common factor Z and the marginal default probability  $P_i$
- : Given fixed expected loss,  $(1 R_i)P_i = (1 \bar{R}_i)\bar{P}_i$

$$G_{i}(Z|S=H) = (1 - \bar{R}_{i}) \frac{F\left[\{F^{-1}\left(\bar{P}_{i}\right) - \alpha_{i}^{H}Z\}/\sqrt{1 - (\alpha_{i}^{H})^{2}}\right]}{F\left[\{F^{-1}\left(P_{i}\right) - \alpha_{i}^{H}Z\}/\sqrt{1 - (\alpha_{i}^{H})^{2}}\right]}$$
$$G_{i}(Z|S=Q) = (1 - \bar{R}_{i}) \frac{F\left[\{F^{-1}\left(\bar{P}_{i}\right) - \alpha_{i}^{Q}Z\}/\sqrt{1 - (\alpha_{i}^{Q})^{2}}\right]}{F\left[\{F^{-1}\left(P_{i}\right) - \alpha_{i}^{Q}Z\}/\sqrt{1 - (\alpha_{i}^{Q})^{2}}\right]}$$

 $\bigcirc$  We set  $R_i = 0$  in the simplest case. Copulae Based Factor Model for Credit Risk Analysis -

## **Conditional Expected Loss**

With these two specifications, the conditional default probability P<sub>i</sub>(Z|S=H,Q) and conditional LGD, G<sub>i</sub>(Z|S=H,Q), conditional expected loss,

 $\mathsf{E}(L_i|Z) = \omega G_i(Z|\mathsf{S}=\mathsf{H}) P_i(Z|\mathsf{S}=\mathsf{H}) + (1-\omega) G_i(Z|\mathsf{S}=\mathsf{Q}) P_i(Z|\mathsf{S}=\mathsf{Q})$ 



# Monte Carlo Simulation and MSE

One-factor non-standardized Gaussian Copula

- ▶  $Z \sim N(-0.08, 1.02), \varepsilon_i \sim N(0, 1)$
- ▶ Z and  $\varepsilon_i$  are generated 252 observations.
- Conditional probability that date t was belonging to the hectic is  $\pi(Z = z)$

$$\mathsf{P}(S = H | Z = z) = \pi(Z = z) = \frac{\omega\varphi(z|\theta^{H})}{(1 - \omega)\varphi(z|\theta^{Q}) + \omega\varphi(z|\theta^{H})}$$

- α<sub>i</sub><sup>H</sup>, α<sub>i</sub><sup>Q</sup> are derived from the daily stock returns of S&P 500 and of collected default companies during the crisis (2008-2009) period.
  - Five-year period prior to the crisis period is the estimation period.

## Project to Default Time

Using the definition of survival rate (Hull, 2006)

$$\tau_i |\mathsf{S}| = -\frac{\log\{1 - F(U_i|\mathsf{S})\}}{P_i}$$

- P<sub>i</sub> is the hazard rate and marginal probability that obligor i will default during the first year conditional on no earlier default obtained from Moody's report.
- $\Box \ \tau_i | S \text{ is corresponding to} \\ \mathsf{E}[\mathsf{I}(\tau_i | S < 1)] = \mathsf{P}(\tau_i | S < 1) = \mathsf{P}_i(Z | S).$



## State-dependent recovery rate simulation

- $\overline{P}_i$  is a adjusted default probability calibrated by plugging hazard rate  $P_i$
- $\boxdot (1-R_i)P_i = (1-\bar{R}_i)\bar{P}_i$
- \$\bar{R}\_i\$ is a lower bound for state-dependent recovery rates [0,1].
   We set \$\bar{R}\_i\$ = 0 in the simplest case.
- $\Box$  Given  $\alpha_i^S$  and simulated Z, we generate  $G_i(Z|S)$

#### Expected loss function

 With these two specifications, we study the expected loss function under the given scenarios

$$E(L_i|Z) = \pi(Z = z)G_i(Z|S=H)P_i(Z|S=H)$$
  
+  $(1-\pi)(Z = z)G_i(Z|S=Q)P_i(Z|S=Q)$ 

 $\boxdot$   $\pi(Z = z)$  is a proxy of unconditional probability  $\omega$ .



#### **Estimation of the MSE**

Estimated Square Error (SE)

 $SE = (actual default loss - expected default loss)^2$ 

- □ Actual default loss is from Moody's report.
- Calculate the mean of square errors referred to as Mean Square Error (MSE)
- Compare minimum MSE to evaluate FC, RFL, RR, and RRFL model

#### Data

- ☑ Forecast Period: 2008 and 2009
- ⊡ Daily USD S&P 500 and stock return of the defaults
- ⊡ Estimated period: 5 years before the default year
- 🖸 Source: Datastream



#### Data

- Recovery rate: Realized recovery rate R<sub>i</sub> (weighted by volume) before default year by Moody's
- Hazard rate: Average historical default probability from Moody's report



## **Empirical Results**

| Model                      | Probability Mean |        | STD   |
|----------------------------|------------------|--------|-------|
| Period                     | 2003-2007        |        |       |
| Unconditional (one normal) | 1                | 0.004  | 0.009 |
| Conditional on quiet       | 0.591            | 0.001  | 0.005 |
| Conditional on hectic      | 0.409            | -0.001 | 0.012 |
| Period                     | 2004-2008        |        |       |
| Unconditional (one normal) | 1                | 0.001  | 0.007 |
| Conditional on quiet       | 0.325            | 0.001  | 0.002 |
| Conditional on hectic      | 0.675            | -0.001 | 0.009 |

Table 1: Estimate Mixture of Normal Distribution by employing an EM algorithm

STD represent standard deviation

#### **Conditional Factor Loading**

| Company                           | Uncond. | Quiet   | Hectic |
|-----------------------------------|---------|---------|--------|
| Abitibi-Consolidated Com. of Can. | 0.2917  | 0.1651  | 0.2898 |
| Abitibi-Consolidated Inc.         | 0.3267  | 0.1880  | 0.3190 |
| FRANKLIN BANK                     | 0.3886  | 0.2116  | 0.3119 |
| GLITNIR BANKI                     | 0.0444  | 0.0293  | 0.0674 |
| LEHMAN BROS                       | 0.0375  | -0.0060 | 0.0235 |

Table 2: Correlation coefficients between S&P500 index returns and the return of default companies in 2008



#### Empirical Results



Figure 1: The relationship between recovery rate and S&P 500. In panel (a) and (b), illustrate the pattern of recoveries rate of 2 defaults in 2008. In panel (c) and (d), 2 defaults in 2009.

#### Empirical Results



4-6

Figure 2: The relationship between recovery rate and default probabilities

## **Estimation of MSE**

| Company                           | FC     | RFC    | RR     | RRFL   |
|-----------------------------------|--------|--------|--------|--------|
| Abitibi-Consolidated Com. of Can. | 0.0522 | 0.0526 | 0.0246 | 0.0240 |
| Abitibi-Consolidated Inc.         | 0.1030 | 0.1041 | 0.0623 | 0.0608 |
| Franklin Bank Corp.               | 0.9904 | 0.9881 | 0.9774 | 0.9765 |
| Glitnir banki hf                  | 0.9406 | 0.9404 | 0.9404 | 0.9399 |
| Lehman Bro. Hold., Inc.           | 0.8223 | 0.8223 | 0.8223 | 0.8222 |

Table 3: The Estimation of MSE

The estimation of MSE of four different models for each default company in 2008.

Copulae Based Factor Model for Credit Risk Analysis -



4-7

#### **Empirical Results**

| Year | FC   | RFL  | RR    | RRFL  | Total |
|------|------|------|-------|-------|-------|
| 2008 | 1    | 1    | 10    | 19    | 31    |
|      | 3.2% | 3.2% | 32.3% | 61.3% |       |
| 2009 | 3    | 5    | 23    | 31    | 62    |
|      | 4.8% | 7.9% | 37.1% | 50.0% |       |

Table 4: Number and Percentage of defaults with minimum MSE

4-8

#### Empirical Results



Figure 3: The 2D and 3D scatters plot of relative contribution



# Conclusions

- (i) Model the dependence in a more flexible and realistic way
  - Build the quiet and hectic regimes
  - Connect the recovery rate to the common factor
- (ii) The conditional factor copulae together with state-dependent recoveries model could predict the default event during the crisis period
- (iii) Coherent with the goals of Basel III



#### **Further Work**

- (i) Alternative marginals: Generalized extreme value distribution or t-distribution.
- (ii) Alternative copulae: T-copulae.



# Copulae Based Factor Model for Credit Risk Analysis

Meng-Jou Lu Cathy Yi-Hsuan Chen Wolfgang Karl Härdle

Ladislaus von Bortkiewicz Chair of Statistics Humboldt–Universität zu Berlin C.A.S.E. – Center for Applied Statistics and Economics National Chiao Tung University Department of Finance Chung Hua University Ivb.wiwi.hu-berlin.de case.hu-berlin.de nctu.edu.tw









# References

- Amraoui, S. and Cousot, L. and Hitier, S. and Laurent, J. *Pricing CDOs with state-dependent stochastic recovery rate* Quantitative Finance 12(8): 1219-1240, 2012
- Ang, A. and Bekaert, G. International asset allocation with regime shifts Review of Financial Studies 15(4):1137-1187, 2002
- Krupskii, P. and Harry, J. Factor copula model for multivariate data Journal of Multivariate Analysis 120: 85-101, 2013

Krupskii, P. and Harry, J.
Factor copula model for multivariate data
Journal of Multivariate Analysis 120: 85-101, 2013
Copulae Based Factor Model for Credit Risk Analysis



# Conditional factor loading •••••

#### $\boxdot$ (Z, U<sub>i</sub>) ~

$$\left\{ \begin{array}{l} N\left( \begin{bmatrix} \mu_Z^Q \\ \mu_i^Q \end{bmatrix}, \begin{bmatrix} (\sigma_Z^Q)^2 & (\sigma_Z^Q)\alpha^Q(\sigma_i^Q) \\ (\sigma_Z^Q)\alpha^Q(\sigma_i^Q) & (\sigma_i^Q)^2 \end{bmatrix} \right) \\ N\left( \begin{bmatrix} \mu_Z^H \\ \mu_i^H \end{bmatrix}, \begin{bmatrix} (\sigma_Z^H)^2 & (\sigma_Z^H)\alpha^H(\sigma_i^H) \\ (\sigma_Z^H)\alpha^H(\sigma_i^H) & (\sigma_i^H)^2 \end{bmatrix} \right) \end{array} \right.$$

• where  $P(S=H)=\omega$ ,  $P(S=Q)=1-\omega$ 

∴ Volatility in hectic periods is higher than in a quiet periods,  $(\sigma_i^H)^2 > (\sigma_i^Q)^2$ .

 $\boxdot \ \alpha^Q$  and  $\alpha^H$  are the correlation coefficient between each obligor and S&P 500 in quiet and hectic period

